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THE BDM CORPORATION

APPLICATION OF OPTICS TO PROBLEMS IN

1 SYMBOLIC COMPUTATION

ANNUAL TECHNICAL REPORT - JANUARY 1988

INTRODUCTION

The goal of the program "Application of Optics to Problems in
Symbolic Computation" at BDM is to examine the impact that optical
computing may have on outstanding problems in Al. During the period
covered by this report, two new efforts were undertaken that demonstrate
how optical techniques can alleviate specific communication and processing
bottlenecks in symbolic computation. In particular, the first effort
developed the folded perfect shuffle optical processor to seve as the
communication hardware for parallel processors intended to speed up 142
solution of AI problems. The second effort addressed the application of
parallel optical Boolean matrix operations to prune the search space of Al
prnblems that are represented by the consistent labeling formulation. In
the following paragraphs, the salient features and impact of these two
efforts will be discussed. The next two sections of this report contain
journal articles that describe these efforts in more detail.

The perfect shuffle (PS) is an important interconnection pattern in
parallel processing. It has been shown to be capable of speeding up

3 computation of the FFT and matrix operations along with routing messages in
a centralized or distributed manner for parallel computer architectures.
However 2D implementations of the PS in either VQ.SI or printed circuit
board technology, must consume at least O(NI/log N) surface area. For
large N, the amount of area that the network requires can be prohibit
single chip or single board implementations. Thus, large PS's must cross

I at least one level of the computer organization heirarchy, seriously
degrading the network performance in terms of physical size, power
consumption, and signal delay. Another limitation of 2D technologies is as
the chip area grows, for the area-optimal layouts so does difference in
lengths of the longest and shortest communication paths. This implies that
there will be a size-dependent signal skew which limits the signal
bandwidths of synchronous systems.

To alleviate the performance limitations imposed by 2D electronic
technology, BDM developed the folded perfect shuffle optical processor.
The folding strategy begins by raster encoding the ID list into a 2D array.
The shuffling operations are also transformed into 2D and applied to the
2D-formatted data. This approach uses the 2D formating and 3D connection
capabilities of optics to perform large perfect shuffles that require only
O(N) area; allow the per channel power to be independent of N; have low
delay; and eliminate signal skew, allowing high bandwidths. These
properties will allow future parallel processors to be larger and to
operate at higher speeds, significantly reducing the time it takes parallel
processors to solve computationally intensive Al problems. The details of
our architecture are given in the attached reprint of a paper published
recently in Applied Optics.
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The second task undertaked during this reporting period was an
investigation of optical techniques for application to search problems in
Artificial Intelligence (AI). The tree search or graph matching problem is
ubiquitous in Al. Applications areas include: scheduling, theorem proving,
and scene labeling/interpretation for computer vision. In general these
problems have exponential time complexity and become intractable rapidly as
the number of variables grows. A large body of research has been dedicated
to developing "tree-pruning" techniques, which use forward checking to
increase the efficiency of the search. These techniques attempt to avert
the combinatorial explosion by using the relational constraints of the
problem in local graph operations (arc and path consistency checks) to
reduce the complexity of the search tree. Under worst case assumptions,
forward checking itself requires exponential time; however, for many real
world problems, it does increase the efficiency of the search.

A tree search can be formulated as a consistent labeling (CL)
problem, in which the goal is to assign a label, from a set of L elements,
to each unit, from a set of U elements. U corresDonds to the number of
levels in the search tree and L corresRpnds to the number of branches at
each node of the tree. Not all of the L possible assignments are permited
by the problem constraints and the goal of a forward checking algorithm is
to rule out, in advance, those partial labelings which cannot possibly
contribute to a CL, where a CL is defined as a labeling of all U units in
which all of the labelings are simultaneously compatible with the problem
constraints.

The initial problem constraints are given as tuples of units which
mutually constrain each other, along with the sets of allowed labels for
each tuple. Here we restrict our attention to binary constraints. Many
interesting problems in the application areas mentioned above can be cast
as CL problems with binary constraints. For such problems the constraint
data can be represented as LxL Boolean matrices, one for each pair of
units that constrain each other.

In this task we investigated. the potential for improving the
efficiency of the search by applying highly parallel optical Boolean matrix
operations to the set of constraint matrices. The purpose of these
operations is two-fold. First, we want to remove, from the initial set of
binary constraints, as many as possible of those that do not contribute to
any consistent labeling. This improves the efficiency of the search by
reducing the size of the domain of allowed pair labelings that must be
checked during the search procedure. The second purpose in manipulating
the constraint matrices is to make explicit those unary constraints that
are implied by the initial set of binary constraints. These induced unary
constraints can then be applied directly in the search process to prune the
search tree. Our ideas are detailed in a preprint of a paper attached to
this report which has also been submitted to the Optical Engineering
special issue on optical computing.
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The perfect shuffle interconnection network (PS) consists Pau" Ps OUTUT

of splitting a linear array of N = 2n items in half and inter- Fig. 1. Two-step approach to the folded PS.
leaving the two halves. Th, PS was originally proposed as
the interconnection primitive between local processors for
parallel computation of the fast Fourier transform polyno-
mial evaluation, sorting, and mitrix transposition.' Inter-
connection permutations necessary for parallel matrix corn-
putations other than matrix transpose also were realized on
the PS. 2 For the more general routing problems found in 5 6 7 6, 3I4

MIMD machines and telecommunications networks, an al- 1 13 s 13 a 1,

gorithm was presented to connect an arbitrary permutation Is 1 I0 t
of inputs to outputs with a limited number of PS stages L i 1

[OiiogN)j. 3 A review of the parallel computation abilities of N
the PS is conducted in Ref. 4. Fig. 2. One-step approach to the folded PS.

The wide utility of PS networks led to attempts to map the
PS onto VLSI architectures. 5.6 The inherent VLSI wiring
characteristics of capacitive and inductive crosstalk, length-
dependent power requirements, timing skew, limited cross- length of the data words must be known a priori. With time-
overs, and chip area are ill-suited to the global and space- multiplexed data streams, however, the word length is un-
variant nature of the PS. Thus a trade-off of local limited, and the other spatial dimension is free to encode
processing complexity, the number of parallel channels and additional data channels. Moreover, in many cases, the

l signal bandwidth due to the practical limitations of VLSI, subsystems connected by the PS provide and require serial
limits the applicability of electronic PS implementations. data. A 2-D optical PS was proposed' and demonstrated"

The ability of light beams to carry high-bandwidth data that rearranges a 2-D image of serial data streams by 0hof.
through free space without mutual coupling, the indepen- fling the rows and columns. The architecture divides and
dence of drive power and interconnection length, the mini- interlaces the matrix along each direction as separate opera-
mal timing skew, and the 3-D nature of optical systems led to tions. Since the 1- and 2-D PS are different interconnection
suggestions of optical interconnects for electronic proces- primitives, not all the routing algorithms and hardware de-
sors.7 The space-bandwidth product of optical systems veloped for the I-D PS are compatible with the 2-D PS.
(10") limits the number of parallel channels, while the modu- In this Communication we describe an algorithm that
lation speed (10 GHz) and degree of multiplexing (wave- performs a 1-D PS on a long 1-D sequence that is raster-
length and polarization) limit the channel bandwidth. By formatted on a matrix. We propose optical architectures
using optical communications the overall system throughput and hardware to implement the algorithm and show experi-
is increased by eliminating the interconnection network bot- mental results for a particular system. The proposed algo-
tleneck. Hence free-space optics appears ideal for imple- rithm and architectures retain compatibility with the well-
mentation of the PS in applications with high data rates or developed i-D PS algorithms while taking full advantage of
many parallel channels like telecommunications and fine- the 3-D interconnection capabilities and 2-D space-band-
grained parallel processors. width of free-space optics. Because a similar philosophy was

The earliest proposed free-space optical architectures for employed in designing 2-D optical systems to perform spec-
the PS8-9 are capable of shuffling either the rows or columns trum analysis of very long (106) raster-recorded 1-D time
of a matrix. If each data word is recorded as a column, signals in the work on the folded spectrum analyzer, 12.13 we
shuffling between the columns results in a bit-parallel PS. call our processor the folded perfect shuffle optical proces-
In such spatially multiplexed architectures the maximum sor.

202 APPLIED OPTICS / Vol. 27. No. 2 / 15 January 1988
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The 1-D PS algorithm is shown in Eq. (1) where N is the
number of channels, i is the original data index, and i' is the
shuffled index. (All indices start at0.) Since the operations ........ ......................
on the indices are linear and commute, they can be per- -no
formed in any order or simultaneously:

becae ifO<i <N/2-1, theni'= 2i; --
ifN/2<i<N-1, theni'=f2i+1-N. (1) KA Fh-I DP

The details of the 1-D and 1-D folded PS algorithms differ Fig. 3. One-step imaging architecture for the folded PS.
because the data formats are fundamentally dissimilar.
While the linear algorithm (and 2-D) requires the list (image)
to be divided and interlaced along the same direction (both
directions independently), in the folded algorithm the ma-
trix is divided in half along the rows and interlaced along the t
columns. This results in a shuffled version of the input, but
the rows are now twice as long and the columns half as high as 7
those in the input matrix. Hence the output matrix must be
further divided along the columns and interlaced along the
rows for input/output compatibility (Fig. 1). Interchanging
row and column operations in the preceding sequence pro- 16
duces the same folded output. These operations can also be
performed simultaneously by dividing, magnifying, shifting,
and interlacing the quadrants (Fig. 2). Masking is necessary
for the area of the output pixels to be compatible with the 55 ,3 5
input. In some architectures masking prevents pixel over- 7O
lap.

Dividing a raster encoded matrix along both directions
mandates that the dimensions be even. Optically dividing a

matrix is possible using beam splitters, mirrors, Wolloston Fig. 4. Experimental results for sixty-four-channel folded PS.
prisms with polarization encoding, gratings, or lenslet arrays. The variation in contrast is due to the nonuniformities in the input
Addition of a constant, minus N or plus 1, is a simple shift of a illumination.
quadrant in the verticle or horizontal directions, respective-
ly. Practical shifting hardware includes tilted mirrors, off-
axis lenses or lenslet arrays, prisms, or gratings. Multiplying
the position by two involves imaging with 2X magnification.
Figure 3 depicts a one-step architecture for the folded per- Reerrices
fect shuffle. A simple mask at the input plane recodes the 1. H. S. Stone, "Parallel Processing with the Perfect Shuffle."
image for magnification and shifting. The four imaging IEEE Trans. Comput. C-20, 153 (1971).
lenses perform the magnification and shifting by overlap- 2. D. H. Lawrie, "Access and Alignment of Data in an Array
ping the quadrants at the output plane. Due to the input Processor," IEEE Trans. Comput. C-24, 1145 (1975).
recoding, the overlapped quadrants produce the desired PS 3. C. L. Wu and T.-Y. Feng, "The University of the Shuffle-Ex-
output The exoerimental results for 64-point perfect shuf- chanae Network," IEEE Trans. Comput. C-30, 324 (1981).
fles are shown in Fig. 4. The architecture is easily extend- 4. J. T. Schwartz, "Ultracomputers," ACM Trans. Program. Lang.
able to larger numbers of parallel channels. Syst. 2, 484 (1980).

In summary: We desire a folded perfect shuffle optical 5. F. T. Leighton, Complexity Issues in VLSI: Optimal Layouts
processor for several reasons. First, the I-D perfect shuffle for the Shuffle-Exchange Graph and Other Networks (MIT
is an important interconnection primitive in communica- Press, Cambridge, 1983).
tions and parallel computation. Second, formatting the I-D 6. C. D. Thompson. "The VLSI Complexity of Sorting," IEEE
data channels in two dimenaiDns efficiently uses the 3-D Trans. Comput. C-32, 1171 (1983).
interconnection capability of optics for potentially upwara 7. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale.
of 106 parallel channels. Moreover, parallel channels and "Optical Interconnections fnr VLSI Systems," Proc. IEEE 72,
serial data are compatible with the requirements of many 850(1984).
preceding and subsequent information handling subsys- 8. A. Lohmann, W. Stork, and G. Stucke, "Optical Implementation
tems. Finally, the passive nature of the optical architectures of the Perfect Shuffle," in Technical Digest, Topical Meeting on
presented allows shuffling times of the order of a nanosecond Optical Computing (Optical Society of America, Washington,
and are readily pipelinable. In this Communication, we DC, 1985), paper WA3.
described an algorithm that performs a folded perfect shuf- 9. J. E. Midwinter, "'Light' Electronics, Myth or Reality?," lEE
fle. We outlined the architectural and hardware approaches Proc 132, Pt. J, No. 6, 371 (1985).
to implement the algorithm optically and demonstrated a 10. A. Lohmann, "What Classical Optics can do for the Digital
particular architecture on a 64-point perfect shuffle. Optical Computer," Appl. Opt. 25, 1543 (1985).

ii. S.-H. Lin, T. F. Krile, and J. F. Walkup. "2-D Optical Multistage
Interconnection Networks," Proc. Soc. Photo-Opt. Instrum.
Eng. 752, 209 (1987).

This research was supported by the Advanced Research 12. C. E. Thomas, "Optical Spectrum Analysis of Large Space
Project Agency of the Department of Defence and was moni- Bandwidth Signals." Appl. Opt. 5, 1782 (1966).
tored by the Air Force Office of Scientific Research under 13. T. M. Turpin. "Spectrum Analysis Using Optical Processing."
contract F-49620-86-C-0030. Proc. IEEE 69, 79 (1981).

15 January 1988 / ' 77, No. 2 / APPLIED OPTICS 203
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optical Techniques for Increasing the

Efficiency of Heuristic Search

Michael W. Haney, Ravindra A. Athale, and Roger A. Geesey

BDM Corporation

7915 Jones Branch Drive

McLean, VA, 22102

ABSTRACT

Many problems in Artificial Intelligence are intractable due

to the exponential growth of the solution space with problem

size. Often these problems can benefit from heuristic search or

forward-checking techniques which attempt to prune the search

space down to a managable size before or during the actual search

procedure. Many interesting search problems can be formulated as

consistent labeling problems in which the initial problem

information is given in the form of a set of binary constraints,

for which Boolean matricos are a natural data represention. In

this paper optical implementations of Boolean matrix operations

are proposed for manipulating the constraint matrices to perform

forward-checking and thereby increase the search efficiency. The

high degree of parallelism afforded by using optical techniques

and the relatively low accuracy requirements of Boolean matrix

operations suggest that optical techniques are well matched to

this problem.i
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I. Ir'zoduction/Background

Problems that require searching through very large solution

spaces are ubiquitous in Artificial Intelligence (AI). Examples

can be found in: expert systems, scheduling, theorem proving,

database management, game playing, decoding, and computer vision.

In general these problems have exponential computational

complexity and solutions based on exhaustive search are

impractical. These problems are characterized by a lack of

structure in the solution space which precludes algorithmic

solutions. Heuristic search strategies are therefore envisioned

as the only hope for attacking these problems.

Many AI problems can be formulated as consistent labeling

(CL) problems (1], in which the goal is to assign a label, from a

set of L possible labels, to each unit, from a set of U units,

while satisfying all the known constraints of the problem. The

initial problem constraints are given as a set T of n-tuples of

units which mutually constrain each other, along with a set R of

2n-tuples which list the allowed label assignments for each n-

tuple in T. The constraint relations defined by T and R can, in

general, consist of unary-, binary-, ternary-, ...- relations,

depending on the number of elements in the n-tuples.

To make these notions less abstract, it is appropriate to

describe the CL formulation in terms of a real-world example.

Consider the problem of scheduling N speakers (denoted:

a,b,c,...) into N timeslots (denoted: 1,2,3,...,N). The set of

units corresponds to the various timeslots and the set of

possible labels for those timeslots corresponds to the set of

6



speakers. An example of a given unary constraint is: "Speaker

S 'a' is unavailable for timeslots 20 through 30". In the CL

formulation this corresponds to having the set of individual

units being self-constraining as 1-tuple members of the set T.

The corresponding members of the set R are of the form: (l,a),

(2,a),...,(19,a), (31,a),..,(N,a). This set corresponds to the

allowed label assignments taking into account the known unary

constraint. An example of a binary constraint is: "Speakers 'b'

and 'c' should not be scheduled back-to-back". The corresponding

members of the set T are then all pairs of units (timeslots) that

are in sequence, i.e., (1,2), (2,3),...,(N-I,N), and the

corresponding members of the set R are of the form:

(l,i;2,j),(2,i;3,j),...,(N-l,i;N,j), such that i and j are not

S si-multaneously b and c. An example of a possible ternary

constraint is: "Speakers 'a','e', and 'f' should be scheduled in

sequence;" the appropriate members of T and R can be listed in an

~ analogus manner to the binary constraints.

In this paper we restrict our attention to binary

constraints -- the units directly constrain each other only in a

pairwise manner. Many interesting problems in the application

areas mentioned above can be cast as CL problems with binary

constraints. Examples of such problems include the

Satisfiability problem, which is an archtypical NP-complete

problem related to theorem proving, and scene labeling in

computer vision, among others [3].

7



II. Consistent Labeling Problem with Binary Constraints

1. Graphs and Tree Structures

When cast as a directed graph problem, the nodes of the

graph correspond to the units and the connecting arcs of the

graph correspond to relations between the nodes that define the

allowed labels for each node. The search process consists of

moving from node to node in the graph, assigning labels to each

unit (node), and checking to determine whether the label

assignments made so far are consistent with the given problem

constraints.

Figure 1 illustrates an example of a binary constraint

search problem involving 5 units and 3 labels. The initial set

of pairs of units which constrain each other is given in set T

and the allowed set of labels for these constraining pairs is

given in the set R. Since only binary constraints are

considered, the graph representation in Figure 1 has arcs

connecting nodes in a pairwise manner. Furthermore, we assume

for this simple example that the order of the units in the

constraining pairs does not matter. In this case the graph

representation is an undirected graph as shown.

The recursive nature of the graph search process is often

represented as a tree structure to permit the time history of the

search process to be preserved. For the CL problem formulation,

U, the number of units, corresponds to the number of levels in

the search tree, and L, the number of candidate labels,

corresponds to the number of branches at each node of the tree.

Not all of the LU possible assignments are permited by the

8



problem constraints and the goal of the search is to find which

(if any) of the possible labelings are all simultaneously

compatible with the problem constraints. Such a labeling is

called a Consistent Labeling. The initial search tree associated

with the problem depicted in Figure I is shown in Figure 2. It

can be seen that even such a simple problem has LU = 243

possible paths that might need to be checked for a consistent

labeling in a brute-force search, revealing the combinatorial

explosion.

In a standard back-tracking tree search procedure a trial

label is assigned to the first level (unit) of the tree and

checked to see if it is consistent with the given constraints.

If the label is not consistent a new label is tried until one is

found that is allowed. When a permitted label is found, a trial

label is assigned to the second level of the tree, and the trial

pair of labelings is checked for consistency with the given

constraints. This procedure is maintained down through succesive

levels of the tree until either a CL (i.e., an allowed path) is

found or a unit is discovered for which no allowed label can be

found. In the latter case the procedure must back up one level

of the tree (i.e., to the previous unit) and find another

consistent label before continuing. If no label can be found at

that level then the search must back up one more level until an

allowed labeling is found that is different from the one that

caused the procedure to halt and backtrack. If the search is

b forced to backtrack all the way to the first level without

finding a CL then no CL exists. The problem with this procedure

9



is that it suffers from "thrashing" behavior [2] -- a trial

labeling at a high level in the tree which is not part of a CL

may not be discovered without checking down many paths and

backtracking many times.

A large body of research has been dedicated to developing

"tree-pruning" techniques, which use forward checking to forstall

thrashing and increase the efficiency of the search. These

techniques attempt to avert the combinatorial explosion by using

the relational constraints of the problem in local graph

operations (arc and path consistency checks) to reduce the

* complexity of the search tree. Under worst case assumptions,

forward checking itself requires exponential time; however, for

many real world problems, it does increase the efficiency of the

search (3].

2. Data Representation

For problems with binary constraints the relation data can

be represented as LxL Boolean matrices, R(i,j), one for each

pair of units (i,j) that constrain each other [2]. The L rows

correspond to the labels of unit i and the L columns correspond

to the labels of unit J. The presence of a "1" as the klth

element of matrix R(i,j) indicates that assigning the ith unit

with label "k" is consistent with labeling the jth unit "1".

Note that if two units are not given to constrain each other

directly, then the initial constraint matrix corresponding to

that pair would consists of all l's and contains no useful

information about how that pair of units might ultimately

constrain each other through induced constraints. Figure 3 shows

100i



the seven binary constraint matrices corresponding to the given

m allowed labelings in the example problem of Figure 1. Since the

ordering of the constraining pairs is not important in this

problem it is noted that R(i,j) - RT(j,i), where T indicates

-- transpose of the matrix.

3. Forward-checking

In general, the set of given constraints is very large. For

those search problems for which there are only a small number of

possible CLs, this means that many of the initially allowed label

assignments are superfluous -- they do not contribute to any of

the CLs. Indeed, a large portion of the inefficiency in brute-

force search strategies can be attributed to the repeated checks

of these extraneous contraint relations during the search. An

important objective of a forward-looking procedure is therefore

to discard as many as possible of those constraints that play no

role in a final solution (1], thereby avoiding the inefficiency

m of repeatedly checking them during the search.

Various levels of forward-checking can be achieved,

corrsponding to looking ahead to various levels in the search

tree. An arc of the graph is consistent if the set of allowed

labelings for the pair of nodes (units) connected by the arc is

also consistent with the allowed labelings of all other pairs of

nodes that contain one of the two initial nodes. If all arcs of

the graph are consistent, then the arc consistent network (2] has

been computed, i.e., we have looked-ahead to all paths of length

1 from each node of the graph. This concept can be generalized

to paths of length 2 and higher [2].
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In the next section we discuss the application of highly

parallel optical Boolean matrix operations to the set of

constraint matrices to perform arc and path consistency checks.

The purpose of these operations is two-fold. First, as stated

earlier, we want to remove, from the initial set of binary

constraints, as many as possible of those constraints that do not

contribute to any consistent labeling. This improves the

efficiency of the search by reducing the size of the domain of

allowed pair labelings that must be checked during the search

procedure. The second purpose in manipulating the constraint

matrices in forward checking operations is to make explicit those

unary constraints (i.e., unit ui cannot assume label ik) that are

implied by the initial set of binary constraints. The

derivation of a unary constraint from the given binary

constraints constitutes a significant reduction in the size of

the search space. Each induced unary constraint for a unit u

reduces the size of the search space by a factor of 1-Lu/L, where

Lu is the current number of labels for unit u found to be not

permitted by induced unary constraints, and L is the total number

of labels. The induced unary constraints can thus be applied

directly to the search tree.

As the forward-checking process proceeds, the constraint

matrices become more sparse due to the deletion of extraneous

constraints. Eventually, the sparsity of the matrices may become

such that an entire row or column contains only zeros. This

situation indicates an induced unary constraint. The operation

of unary constraint detection is accomplished by examining each

12



of the current set of binary constraint matrices for the presence

of a row or column containing only 0's. This situation indicates

that the unit associated with the rows or columns of that matrix

can never be assigned the label corresponding to that row or

column. This can be detected by performing an OR operation

across all rows, and then all columns, for each of the constraint

matrices. If an all-zero row or column is found, then the

resulting induced unary constraint can be propagated to all other

contraint matrices that share the same unit by zeroing out the

associated row or column associated with that label and unit.

b This may lead to the discovery of new induced unary constraints

which can be detected and propagated until a fixed point is

reached.

* The first step in a breadth-first forward-checking procedure

is to check for unary constraints that might be already present

in the initial binary constraints. Examination of the matrices

for the sample problem in Figure 3 reveals that R(2,3) has a row

and a column that consists of all zeros. The all-zero row

corresponds to the unary constraint: unit 2 cannot have label b,

and the all-zero column corresponds to the unary constraint: unit

3 cannot have label c. Propagation of these unary constraints

results in the zeroing out of the third column of R(1,3) and the

third row of R(3,4). The new set of reduced constraint matrices

is shown in Figure 4. Applying the unary constraints to the

search tree reduces the number of possible paths that might

possiblly need to be checked to 108 as shown in Figure 5.

13



The detection and propagation of all unary constraints

hidden in the initial set of binary constraints corresponds to

the computation of the arc consistent network for the problem.

To achieve further benefit from forward-checking requires the use

of path consistency checks for paths of length 2 or greater.

III. Optical Matrix Manipulations for Pruning the Search Tree

1. Boolean Matrix Operations

The Boolean matrix operations of intersection and

composition have previously been suggested for use in forward

checking (2]. Intersection is the element by element ANDing of

corresponding entries of two matrices to yield a new matrix.

Composition is a Boolean matrix multiplication which is obtained

by replacing the multiplication and addition operations in

conventional matrix multiplication by Boolean AND and OR

operations, respectively.Since the multiplication between two

binary elements is equivalent to their multiplication, the only

oprerational difference is in the generation of binary output

elements by replacing the analog addition with multi-input OR

operation. Here we propose that these operations can be combined

with unary constraint detection and unary constraint propagation,

to compute path consistent networks which will increase the

efficiency of the search. Furthermore, for increased speed, all

of these operations can be implemented optically, using

established low accuracy analog linear algebraic techniques,

followed by simple nonlinearities at the detector stage to

implement the OR operation.

14



The use of intersection and composition in a forward

3 checking operation proceeds as follows. Given a constraint matrix

relating units i and j, R(i,j), and other constraint matrices

R(i,k) and R(k,j), we can create a new constraint matrix:

R'(i,j) = R(i,j)*R(i,k)&R(k,j), (1)

where "*" indicates the intersection operation and "&" indicates

the composition operation. Composition takes precedence over

intersection. The induced relation R' replaces R and is a

Be stronger constraint between units i and j because it now takes

into account the influence of an intermediate unit (k) along the

path and not just the single arc between the units. Even

m stronger constraints can be derived by intersecting R'(i,j) with

other induced constraint matrices derived from the composition of

matrices along other paths between i and J. In practice, this

operation would be performed on all constraining pairs of units

to some level of path length.

In the example problem, the application of Equation 1 to

compute new versions of R(1,4) and R(1,5), as shown in Equations

2 and 3:

R'(I,4) - R(I,4)*R(I,3)&R(3,4), (2)

R'(I,5) - R(1,5)*R(1,4)&R(4,5), (3)
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These path consistency checks yield new unary constraints which,

after propagtion, result in the set of constraint matrices shown

in Figure 6. With the new induced unary constraints (unit 1

cannot be labeled "b", unit 5 cannot be labeled "a") the search

tree is now pruned such that only 48 paths remain to be checked

in a search procedure, as shown in Figure 7. A check of these

paths shows that there are 3 CLs for the example problem:

(la,2a,3a,4b,5b), (la,2c,3a,4b,5b), and (lc,2c,3b,4a,5c).

2. Optical Implementation

Optical implementation of the operations of intersection and

composition has previously been suggested in the context of

inference machines [5]. The operation of intersection can be

implemented optically via image multiplication by representing

the constraint matrices as binary images, while composition can

be implemented by analog optical matrix multiplication, followed

by thresholding to restore the levels to 1 or 0.

Unary constraint detection is achieved by focusing the light

passed through the matrices along each dimension separately and

detecting the presence of light with a 1-D threshold detector

array. This achieves the required OR operation across all rows

or columns simultaneously. To propagate the induced unary

constraint the resulting thresholded 1-D data, R(i), is

L transformed into a light signal, spread out into a 2-D array, and

multiplied by all other matrices, R(i,m), which share the unit

that has the unary constraint. For constraint matrices which

* involve the unit i as the column index, the transpose, RT(m,i) is

used.
16



* IV. Discusion

The forward-checking process could conceivably continue

until all the superfluous binary constraints and resulting unary

constraints are discovered. At this point the minimal network

[2] has been computed, which means that every remaining binary

labeling in the constraint relations is a part of at least one CL

and forward checking will not reduce the set of binary

constraints any further. It has been shown that the closer a

network is to minimal then the less work the tree search will

have [3]. However, computation of the minimal network for a

general combinatorial problem is itself an NP-complete problem

[4]. In fact forward-checking is not guaranteed to reduce the

computational requirements of the search. However, some problems

have proven to benefit greatly from the application of forward-

checking [2].

Rather than carrying out the entire search procedure using

optical forward-checking techniques, it is envisioned that the

application of optical techniques for forward-checking is

appropriate as a pre-filtering operation to remove as many of the

superfluous binary constraints as possible and prune the search

tree down as much as possible before turning the problem over to

a conventional Prolog-type processor to complete the search. In

this context, optical techniques would be applied to those

computationally intensive forward-checking operations of the

search that are amenable to highly parallel optical techniques,

while the control intensive and sequencial operations of the

17



search would be left to the more conventional electronic

m techniques.

The extent to which optical forward-checking techniques

should be employed will depend on the size and nature of the

problem and the heuristic search strategy used. Current

conventional wisdom assumes that Boolean constraint matrices as

large as 1000 x 1000 pixels can be handled optically. This would

seem to suggest that an upper limit on 1he number of labels in

the problem would be on the order of 1000. However, this limit

may not be correct -- the large matrix operations can be

decomposed into a set of smaller ones without loss of

computational efficiency. The number of units that can be

handled with optical techniques appears to be limited principally

by the amount of memory needed to store the large number of

constraint matrices -- the more units in a problem, then the more

likely a binary constraint relation exists between a pair of

* units.

The number of unary constraints that can be detected and

propagated, and hence the importance of these operations to the

given problem, is determined by the number of CLs that are

possible (something you may not have a handle on ahead of time)

and the number of labels and units for the problem. Clearly if

only one CL exists then the number of unary constraints that may

be detected through forward-checking operations grows with the

size of the sets of units and initial candidate labels. At the

other extreme, if the number of CLs is large and the number of

candidate labels is low, then it is possible for there to be no

18



unary constraints in the problem, which simply means that each

m units is allowed to be assigned each of the labels for at least

one CL.

Although optical implementations of the Boolean matrix

- operations and manipulations on the set of constraint matrices

offer the potential for great speed due to the parallel nature of

the computations, the overall speed of a hybrid architecture may

be limited due to bottlenecks associated with the required

control and memory manipulation functions. Effective use of

optical matrix operations may require an architecture which has a

very limited amount of transductions between the optical and

electronic domains to avoid the associated bottlenecks. In fact,

the best approaches may keep the constraint data in an optical

matrix format throughout the forward-checking procedure, and

return to the electronic domain only during the actual search

process. The ultimate utility of optical forward-checking

n techniques will be determined by the progress made in optical

mass storage technology.
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U: (1, 2,3,4,51 L: (a, b, c)

T: (1 ,3), (1, 4), (2, 3), (3 j4), (4, 5)1(1, 5), (215))

R:

(la,3a) (la,4a) (2a,3a) (3ao4b) (4a,5a) (1lbq5a) (2a,5b)
(1la, 3b) (1la,4b) (2c,3a) (3bg4a) (4 b, 5b) (Ila,5b) (2c,5b)
(Ilb,3b) (1lb,4b) (2c,3b) (3b,4c) (4a,5c) (Ilc,5c) (2c,5c)
(1lc,3c) (1lc,4a) (3c,4a) (4c,5b) (2b,5c)
(1lc,3b) (1lc,4c) (3c,4c) (2b,5b)

(1 b,40) (2b,5a)

Figure 1. Constraint Relations: Example
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1 0 0R(1,5)=
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Figure 3. Constraint Matrices for Example Problem
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'• Figure 4. Constraint Matrices After Propagation
of Initial Unary Constraints
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Figure 6. Constraint Matrices After Forward-checking Some
Paths of Length 2
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